Closing Tue: Taylor Notes 1, 2, 3
Closing Thu: Taylor Notes 4, 5
Final is Saturday, March 12
5:00-7:50pm, KANE 130
Eight pages of questions, covers everything.

Recall:

The $\mathrm{n}^{\text {th }}$ Taylor Polynomial for $\mathrm{f}(\mathrm{x})$ based at $\mathrm{x}=\mathrm{b}$ is given by:

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(b)(x-b)^{k}
$$

and if $\left|f^{(n+1)}(x)\right| \leq M$, then

$$
\left|f(x)-T_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-b|^{n+1}
$$

Entry Task:

Find the $9^{\text {th }}$ Taylor polynomial for $f(x)=e^{x}$
based at $b=0$,
and give an error bound on the interval $[-2,2]$

TN 4: Taylor Series

Def'n: The Taylor Series for $f(x)$ based at b is defined by

$$
\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(b)(x-b)^{k}=\lim _{n \rightarrow \infty} T_{n}(x)
$$

If the limit exists a a particular value of x, then we say the series converges at x. Otherwise, we say it diverges at x.

The open interval of convergence gives the largest open interval of values at which the series converges.

Note: if

$$
\lim _{n \rightarrow \infty} \frac{M}{(n+1)!}|x-b|^{n+1}=0
$$

then x is in the open interval of convergence.

A few patterns we know:

$$
e^{x}=1+x+\frac{1}{2!} x^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}
$$

$$
\begin{aligned}
\sin (x) & =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}
\end{aligned}
$$

$$
\begin{aligned}
\cos (x) & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\cdots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}
\end{aligned}
$$

These converge for ALL values of x. So the open interval of convergence for each series above is $(-\infty, \infty)$

Now consider $f(x)=\frac{1}{1-x}$ based at $x=0$.
Find the $10^{\text {th }}$ Taylor polynomial.
What is the error bound on $[-1 / 2,1 / 2]$?
What is the error bound on $[-2,2]$?

Graph of $\mathrm{y}=1 /(1-\mathrm{x})$:

Graph of $y=1 /(1-x)$ and $T_{10}(x)$:

We will find all the following, and for these they converge for $\mathbf{- 1}<\mathbf{x}<\mathbf{1}$.

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+\cdots=\sum_{k=0}^{\infty} x^{k} \\
& -\ln (1-x)=x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1}
\end{aligned}
$$

$$
\begin{aligned}
\arctan (x) & =x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}
\end{aligned}
$$

In other words, the open interval of convergence for these series is: $-1<x<1$.

